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Abstract
In this paper we construct a new integrable natural conservative mechanical
system admitting a second invariant of the fourth degree in velocities. This
system is quite general and involves 21 parameters. We also show that all
systems with a quartic integral known up to date can be obtained from it
as special cases by a relevant choice of the values of parameters. The results
are applied to problems of particle and rigid body dynamics. New integrable
cases are obtained as special versions of the new system. These cases
include motions in a plane, Lobachevsky plane, sphere and surfaces of
variable curvature. They also include generalizations of the classical cases of
Kovalevskaya, Chaplygin and Goriatchev with the addition of certain singular
terms to the potential.

PACS numbers: 45.20.Jj, 45.40.−f, 45.50.−j, 02.30.Ik

1. Introduction

It is well known that integrable systems are just a rare exception among Hamiltonian systems.
This situation, however, makes them of greater importance. They are the only examples of
systems whose behaviour can be studied globally and on an infinite time interval. They can
also be used, through perturbation theories, to draw certain conclusions about the motion of
nonintegrable systems close to them.

In almost all known integrable problems of mechanics the second integral, which is needed
for establishing integrability and solving equations of motion, turns out to be a polynomial in
the velocity variables. The classification of all possible systems of this type is a long-standing
problem of mechanics. The first trial to construct all plane systems with a linear, quadratic or
cubic integral dates back to Bertrand [1], more than 150 years ago. The case of a quadratic
integral received a push by Darboux at the turn of the last century [2] (see also [3]).

Kovalevskaya’s integrable case of the dynamics of a heavy rigid body moving about a
fixed point was probably the first known case of a mechanical system having an integral quartic
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in velocities in addition to the energy integral [38]. It was followed shortly by the case due
to Chaplygin of motion of a body in a liquid [40]. Up to now, a rather limited number of
integrable cases of motion of a particle in the Euclidean plane with a quartic integral was
found, mostly in the past 20 years (e.g. [22–32]). Most of these cases are listed in Hietarinta’s
review [10].

None of the previous works was devoted to a systematic search of polynomial integrals
in cases where the configuration manifold is not an Euclidean plane. The two cases of
Kovalevskaya and Chaplygin have remained until recently the only known examples of natural
systems with a quartic integral on a two-dimensional curved manifold.

In virtue of the famous Maupertuis principle, the motion of a natural mechanical system
can be brought into equivalence (more precisely, orbital equivalence) with the geodesic flow on
some Riemannian metric. Metrics on the Riemannian sphere associated with known integrable
cases of rigid body dynamics were constructed in [33]. Two families of integrable systems
with a quartic integral on S2 were obtained in [34, 35]. Few more works discussed possible
integrable systems with low-degree polynomials on S2 and the hyperbolic plane H 2 (see e.g.
[11–13]).

The method introduced in our work [6] has proved successful in constructing several new
many-parameter families of integrable two-dimensional (not necessarily plane) mechanical
systems with integrals quadratic [7] and cubic [9] in velocities. Some of these systems unify
and generalize certain previously known ones. In particular, the famous integrable cases
of rigid body dynamics are all recovered and mostly generalized by introducing additional
parameters into their structure [7, 9].

In the present work we use the same method to construct quite a new general integrable
system that seems to include as special cases all known systems to date. The original procedure
applied in [6–9] is augmented by a transformation of the independent variable, which allows
systematically adding certain extra parameters to the structure of the system, depending on
the structure of the potential function of that system. It turned out that this modification of
the method enhances the applicability of the results, giving wider possibility of getting curved
metrics on the configuration space. In this way we obtain more known integrable systems on
manifolds with constant (positive or negative) Gaussian curvatures as well as flat manifolds,
as special cases corresponding to particular choices of the set of parameters.

1.1. Primary formulation of the problem

Consider the natural conservative mechanical system described by the Lagrangian

L = 1

2

2∑
i,j=1

aij q̇i q̇j − V, (1)

where the four symbols aij , V denote certain functions of the generalized coordinates q1, q2

only. This system clearly admits the energy integral

I1 = 1

2

2∑
i,j=1

aij q̇i q̇j + V = h, (2)

with h the arbitrary energy parameter. It is evident that this system is time reversible. This
means that if an integral of motion polynomial in the velocities q̇1, q̇2 contains even and odd
powers of the velocity variables, then the even and odd parts of this integral are both integrals
of motion. As we are interested here in systems admitting a quartic integral, the most general
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form of this integral can be written as

I =
4∑

i=0

C4,i q̇
i
1q̇

4−i
2 +

2∑
i=0

C2,i q̇
i
1q̇

2−i
2 + C0, (3)

where the nine coefficients C4,i , C2,i and C0 are functions in q1, q2.

To construct a system of type (1) admitting an integral of the form (3), one should
equate to zero the time derivative dI

dt
in virtue of the equations of motion derived from the

Lagrangian (1). This will result in a system of coupled nonlinear partial differential
equations involving the 13 unknown functions {aij }.V , {C4,i}, {C2,i}, C0. This system is quite
complicated. It was solved only under certain restrictive forms of the ansatz (3) and only for
{aij = δij }, i.e. when the configuration space is an Euclidean plane (see e.g. [10] and also
[14–29]). A crucial improvement of this procedure consists in certain steps, which lead to
maximal simplification of the forms of the Lagrangian and the integral and to reduce the whole
system of governing equations to only four first-order equations involving a minimal number of
four unknown coefficients. The last system is eventually reduced to a single nonlinear partial
differential equation of the fourth order. Achieving these steps relies on some properties of
the system (1) explained in the next subsections.

1.2. The use of isometric coordinates

It is always possible to refer the two-dimensional system to isometric coordinates x, y (say) on
the configuration space1. We can write the Lagrangian of the system (1) in these coordinates
as

L = 1
2�(ẋ2 + ẏ2) − V, (4)

where �,V are certain functions of x, y. The energy integral takes the form

I1 = 1
2�(ẋ2 + ẏ2) + V = h. (5)

In the form (4) the Lagrangian involves only two functions � and V instead of four in (1).

1.3. The use of conformal mapping of the plane of the variables

Isometric coordinates on the configuration manifold are not unique. After affecting an arbitrary
conformal mapping,

x + iy = z(w), w = u + iv (6)

the Lagrangian (4) changes to

L0 = 1

2

∣∣∣∣ dz

dw

∣∣∣∣
2

�[
∗
u2 +

∗
v2] − V. (7)

Thus, the above transformation preserves the structure of (7), changing only � to
∣∣ dz

dw

∣∣2
�.

1.4. Change of the independent variable and the energy parameter of a natural system

It is well known (e.g. [4] or [5]) that transforming time t to a new independent variable t1 by
the relation

dt = �dt1, (8)

1 In systems of three dimensions and higher this property is retained only under some conditions on the metric.
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the original system (4) is transformed to the one with the Lagrangian

L1 = 1
2 [

∗
x2 +

∗
y2] − �V + h� (9)

= 1
2 [

∗
x2 +

∗
y2] − V1, (10)

where the asterisk denotes derivative with respect to t1 and V1 = �(V − h).

If the system (9), referred to the new independent variable (the fictitious time), is to
be treated in the normal way as a conservative system, it should admit another energy-type
integral:

Ī 1 = 1
2 [

∗
x2 +

∗
y2] + V1 = h̄,

involving an arbitrary parameter h̄. Returning this integral to the original time variable and
dividing by �, we get

1

2
�(ẋ2 + ẏ2) + V = h +

h̄

�
.

Comparing this relation to (5), we find that the transformed system (9) is equivalent to the
original system only on the zero level of the parameter h̄. This means that the free system (4)
is consistent to the transformed system (9) under the restriction

Ī 1 = 1
2 [

∗
x2 +

∗
y2] + V1 = 0 (11)

at the energy of the latter. Different energy levels of the first system are mapped to different
values of the parameter h in the transformed system.

This system (9) describes motion of a fictitious particle in the plane under the action of
forces with potential V1 in which the energy constant of the original system already enters
linearly as a parameter. This structure of the potential function is characteristic for natural
systems of physical and mechanical significance. When the potential is found in an inverse
way, as from the solution of a certain system of partial differential equations, it should be
expressed in the form (10) involving an arbitrary linear multiplier and then perform the time-
variable change inverse to (8) to obtain a system of the type (4) admitting an unconditional
integral of the type (5) with arbitrary h.

The general quartic integral (3) is now expressed as the sum of three homogeneous

polynomials in
∗
x,

∗
y involving all 9 coefficients as functions of the coordinates:

I =
4∑

i=0

A4,i

∗
xi ∗

y4−i +
2∑

i=0

A2,i

∗
xi ∗

y2−i + A0. (12)

1.5. Form invariance of the Lagrangian and the equations of motion under conformal
mapping of the plane

After affecting an arbitrary conformal mapping

x + iy = z(ζ ), ζ = ξ + iη (13)

the Lagrangian (9) changes to

L1 = 1

2

∣∣∣∣ dz

dζ

∣∣∣∣
2

[
∗
ξ 2 +

∗
η2] − V1. (14)

Applying the independent variable change

dt1 =
∣∣∣∣ dz

dζ

∣∣∣∣
2

dτ, (15)
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one can again reduce the Lagrangian to the particle form:

L2 = 1

2
[ξ ′2 + η′2] + U, U = −

∣∣∣∣ dz

dζ

∣∣∣∣
2

V1. (16)

where the primes denote derivatives with respect to τ . The corresponding equations of motion
are

ξ ′′ = ∂U

∂ξ
, η′′ = ∂U

∂η
, (17)

ξ ′2 + η′2 = 2U. (18)

It is evident that the above transformation preserves the structure (10) of the potential, changing
� to

∣∣ dz
dζ

∣∣2
�.

1.6. Simplification of the form of the integral

As has been proved in [6] for the general case of a polynomial integral, using the energy
integral (18) and a suitable conformal mapping in the transformation (13), we can always
reduce the integral to the form

I = ξ ′4 + Pξ ′2 + Qξ ′η′ + R = const. (19)

This step is crucial for our method, since the integral (19) now involves only three functions
P,Q and R of ξ, η instead of nine in the original form (12). Note that conformal mapping
followed by a change (15) of time scale leaves invariant the form of equations (17) and (18).
It is clear from the above construction that P and Q may depend on the energy parameter h at
the most linearly while R is at the most quadratic in h. The whole problem is thus reduced to
that of finding the four compatible functions P,Q,R and U.

Let us now consider the system (17) restricted by condition (18). Suppose that this system
admits an integral of the form (19). Differentiating (19) with respect to τ and using (17) and
(18), we obtain the system of four equations satisfied by the four unknown functions:

∂P

∂ξ
− ∂Q

∂η
+ 4

∂U

∂ξ
= 0,

∂P

∂η
+

∂Q

∂ξ
= 0, (20)

∂R

∂ξ
+ 2P

∂U

∂ξ
+ Q

∂U

∂η
+ 2U

∂Q

∂η
= 0,

∂R

∂η
+ Q

∂U

∂ξ
= 0. (21)

From (21) one can express the function R -up to an additive constant- in the form

R(ξ, η) = −
∫

Q
∂U

∂ξ
dη −

∫ [
2P

∂U

∂ξ
+ Q

∂U

∂η
+ 2U

∂Q

∂η

]
0

dξ, (22)

where []0 means that the expression in the bracket is computed for η taking an arbitrary
constant value η0 (say). The whole system (20), (21) is thus reduced to the form of three
equations:

∂P

∂ξ
− ∂Q

∂η
+ 4

∂U

∂ξ
= 0,

∂P

∂η
+

∂Q

∂ξ
= 0,

∂

∂η

(
2P

∂U

∂ξ
+ Q

∂U

∂η
+ 2U

∂Q

∂η

)
− ∂

∂ξ

(
Q

∂U

∂ξ

)
= 0.

(23)

The system (23) can still be reduced to a single nonlinear partial differential equation. In
fact, using the substitution

P = ∂2F

∂ξ 2
, Q = − ∂2F

∂ξ∂η
, U = −1

4

(
∂2F

∂ξ 2
+

∂2F

∂η2

)
, (24)
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which satisfies the first two equations identically, we get from the third equation

∂2F

∂ξ∂η

(
∂4F

∂ξ 4
− ∂4F

∂η4

)
+ 3

(
∂3F

∂ξ 3

∂3F

∂ξ 2∂η
− ∂3F

∂η3

∂3F

∂η2∂ξ

)

+ 2

(
∂2F

∂ξ 2

∂4F

∂ξ 3∂η
− ∂2F

∂η2

∂4F

∂η3∂ξ

)
= 0. (25)

It is not yet known whether equation (25) is integrable, in the sense that some procedure
can be pointed out to construct all its solutions. It sounds reasonable to conjecture that this
equation is in fact integrable.

The set of solutions of this equation generates all systems of the type (17) having an integral
of the form (19) on the zero level of their energy integral. Affecting all possible conformal
mappings of the complex ζ = ξ + iη plane followed by a general point transformation to
the generalized coordinates q1, q2 with a suitable change of the time variable, we obtain all
systems of the general form having a quartic integral on the zero level of their energy integral.

1.7. Classes of integrable systems on an arbitrary energy level

All that we obtain by solving the system (23), or equivalently from a solution of equation (25),
is a Lagrangian of the form

L = 1
2 (ξ ′2 + η′2) + U, (26)

which admits a quartic integral on the zero level of the integral
1
2 (ξ ′2 + η′2) − U = 0. (27)

The function U may contain several arbitrary parameters. We shall be interested more in those
parameters, which are candidates for being energy parameters, i.e. those which appear only
as linear multipliers in a certain term of the modified potential U like h in (9). Each such
parameter can be identified as the energy parameter h and its cofactor as the function �. The
next step is to go back from (9) through the inverse transformation of (8) to the original natural
system (4), for which h is the energy parameter.

Thus, suppose that the function U in (26) has the structure

U = A1v1 + A2v2 + · · · − V0 (28)

involving a number of free parameters Ai, i = 1, 2, . . . , which enter only as linear multipliers
and do not occur anywhere else in the Lagrangian2, the functions V0(ξ, η), vi(ξ, η), i =
1, 2, . . . , being also independent of those parameters. In this case each of the parameters {Ai}
can play the role of an energy parameter with its cofactor as the function � in a system of the
type (4). It is also possible to construct a single system homotopic to all such systems, in the
sense that each of them can be obtained from that system as a special case. The idea is first to
introduce new free parameters h, α1, a1, α2, a2, . . . by the relations

A1 = α1h − a1, A2 = α2h − a2, . . . . (29)

This gives U the form

U = (α1v1 + α2v2 + · · ·)h − (a1v1 + a2v2 + · · · + V0). (30)

The change of the independent variable according to the inverse transformation of (8), i.e.

dτ = dt

�
, (31)

2 In practice, the metric on the configuration space (equivalently the kinetic energy of the mechanical system) is
frequently expressed in terms of some local variables and certain parameters. Such parameters cannot be taken into
account even if they also enter in U in the way shown in (28).
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where

� = α1v1 + α2v2 + · · · (32)

reduces the Lagrangian (26) to the form

L = 1

2
�(ξ̇ 2 + η̇2) +

1

�
U (33)

= 1

2
(α1v1 + α2v2 + · · ·)(ξ̇ 2 + η̇2) + h − a1v1 + a2v2 + · · · + V0

α1v1 + α2v2 + · · · . (34)

In this Lagrangian, t is the natural time. The additive arbitrary constant h is the energy
parameter of the constructed system. The presence of the last parameter in the Lagrangian is
now immaterial and it can be discarded. On the other hand, the restriction (27) is replaced by

1

2
(α1v1 + α2v2 + · · ·)(ξ̇ 2 + η̇2) +

a1v1 + a2v2 + · · · + V0

α1v1 + α2v2 + · · · = h, (35)

which demonstrates that the free parameter h is the energy of the system given by (34). In the
meantime, the quartic integral (19) after the change (31) to the natural time takes the form

I = �4ξ̇ 4 + �2(P ξ̇ 2 + Qξ̇η̇) + R = const. (36)

It may happen that the coefficients P,Q and R depend on {Ai} and hence on h. This parameter
should be replaced wherever it occurs by its expression from (35). Note also that the arbitrary
parameters {ai} remain as multipliers in the potential terms, while {αi} enter into the metric
on the configuration space and may greatly widen the range of possible interpretation of the
system and application of the results. Although splitting the constants {Ai} into parts between
potential and metric may seem artificial, we will see below some cases of real applications
obtained namely in this way.

The idea of introducing extra parameters as in (29) was used to some extent in our previous
works [8, 9]. The above construction will be used in section 3 to obtain the main result of this
paper.

2. The generic conditional system

In the rest of this paper we shall construct solutions of this system compatible with the
assumption that the function F has the structure

F = F1(ξ) + F2(η) + 	(η)
(ξ). (37)

This gives for P,Q and U the expressions

P = f (ξ) + 	(η)
′′(ξ),

Q = −	 ′(η)
′(ξ), (38)

U = − 1
4 [f (ξ) + g(η) + 	(η)
′′(ξ) + 	 ′′(η)
(ξ)],

and reduces (25) to the form

S = [	(η)
(4)(ξ) − 
(ξ)	(4)(η) + f ′′(ξ) − g′′(η)]	 ′(η)
′(ξ)

− {[5
(ξ)	 ′′(η) + 2g(η)]	 ′′′(η) − 3	 ′′(η)g′(η)}
′(ξ)

+ {[5
′′(ξ)	(η) + 2f (ξ)]	 ′′′(η) + 3
′′(ξ)f ′(ξ)}	 ′(η)

= 0. (39)
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This equation involving four unknown functions, each depending on one variable, can be
reduced to a separable form. The method, based on trial, was successfully used in a previous
work to resolve a similar situation [7]. We first note that operating on (39) by the operator

1


′(ξ)	 ′(η)

∂2

∂ξ∂η

1


′(ξ)	 ′(η)
,

we get the identity


(5)(ξ)


′(ξ)
+ 5


′′(ξ)
(4)(ξ)


′(ξ)2
+ 5


′′′(ξ)2


′(ξ)2
− 5


′′(ξ)2
′′′(ξ)


′(ξ)3

−
[
	(5)(η)

	 ′(η)
+ 5

	 ′′(η)	(4)(η)

	 ′(η)2
+ 5

	 ′′′(η)2

	 ′(η)2
− 5

	 ′′(η)2	 ′′′(η)

	 ′(η)3

]
= 0, (40)

which on separation gives


(5)(ξ)



/
(ξ)

+ 5

′′(ξ)
(4)(ξ)



/
(ξ)2

+ 5

′′′(ξ)2



/
(ξ)2

− 5

′′(ξ)2
′′′(ξ)



/
(ξ)3

= 6a4,

	(5)(η)

	 ′(η)
+ 5

	 ′′(η)	(4)(η)

	 ′(η)2
+ 5

	 ′′′(η)2

	 ′(η)2
− 5

	(η)2	 ′′′(η)

	 ′(η)3
= 6a4,

(41)

where a4 is an arbitrary constant, i.e. the two functions 
(ξ) and 	(η) satisfy one and the
same equation of the fifth order. Multiplying by 
′(ξ) and 	 ′(η), respectively, in (41) and
integrating once, we obtain two fourth-order equations:


(4)(ξ) + 5

′′(ξ)
′′′(ξ)


′(ξ)
− 6a4
(ξ) − 3

2
a3 = 0,

	(4)(η) + 5
	 ′′(η)	 ′′′(η)

	 ′(η)
− 6a4	(η) − 3

2
b3 = 0.

(42)

Substituting 
(4)(ξ) and 	(4)(η) from the last equations into (39) and dividing by 
′(ξ)	 ′(η)

we arrive at a separable equation, from which we get two equations:

f ′′(ξ) + 3

′′(ξ)


′(ξ)
f ′(ξ) + 2


′′′(ξ)


′(ξ)
f (ξ) − 3

2
b3
(ξ) − 8A = 0,

g′′(η) + 3
	 ′′(η)

	 ′(η)
g′(η) + 2

	 ′′′(η)

	 ′(η)
g(η) − 3

2
a3	(η) − 8A = 0,

(43)

where A is the arbitrary separation constant. The solution of the last two equations can be
readily obtained as

f (ξ) = 4C0 + 4C1
(ξ) + 4A
(ξ)2 + 1
4b3
(ξ)3


′(ξ)2
,

g(η) = 4D0 + 4D1	(η) + 4A	(η)2 + 1
4a3	(η)3

	 ′(η)2
,

(44)

where C1, C0,D1,D0 are arbitrary constants.
On the other hand, integrating (42) twice (after multiplying by 
′(ξ) and 	 ′(η),

respectively, every time) and separating variables we obtain two relations:

ξ − a5 =
∫ 
(ξ) 1

(a4z4 + a3z3 + a2z2 + a1z + a0)
1
4

dz,

η − b5 =
∫ 	(η) 1

(a4z4 + b3z3 + b2z2 + b1z + b0)
1
4

dz.

(45)
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The functions 
(ξ),	(η) as obtained by inverting the last relations are in general complicated
multi-valued functions. It will be more convenient to use them as generalized coordinates.
Introducing the notation p = 
(ξ), q = 	(η) and going back through the above formulae,
we express the Lagrangian (26) and the quartic integral I in (19) in terms of the new variables
as

L = 1

2

[
p′2√

a4p4 + a3p3 + a2p2 + a1p + a0

+
q ′2√

a4q4 + b3q3 + b2q2 + b1q + b0

]

−
[

νb3p
3 + Ap2 + C1p + C0√

a4p4 + a3p3 + a2p2 + a1p + a0

+
νa3q

3 + Aq2 + D1q + D0√
a4q4 + b3q3 + b2q2 + b1q + b0

]

− ν

[
q(4a4p

3 + 3a3p
2 + 2a2p + a1)√

a4p4 + a3p3 + a2p2 + a1p + a0

+
p(4a4q

3 + 3b3q
2 + 2b2q + b1)√

a4q4 + b3q3 + b2q2 + b1q + b0

]
(46)

and

I = p′4 + 4[νq(4a4p
3 + 3a3p

2 + 2a2p + a1) + νb3p
3 + Ap2 + C1p + C0]p′2

a4p4 + a3p3 + a2p2 + a1p + a0

− 16νp′q ′ − 32ν2
√

a4p4 + a3p3 + a2p2 + a1p + a0

√
a4q4 + b3q3 + b2q2 + b1q + b0

− 16νD1p + 4
K0(p) + qK1(p) + q2K2(p)

(a4p4 + a3p3 + a2p2 + a1p + a0)
, (47)

where

K0(p) = −ν2
(
4b2a4 − b2

3

)
p6 + 2ν(Ab3 − 2νa3b2)p

5 + (A2 + 2νb3C1 − ν2a2b2)p
4

+ 2(AC1 + νb3C0 − 2ν2a1b2)p
3 +

(
C2

1 + 2AC0 − 4ν2a0b2
)
p2 + 2C0C1p + C2

0 ,

K1(p) = −2ν[2νb3a4p
6 + 3νa3b3p

5 − (2a4C1 − Aa3 − 4νa2b3)p
4

+ (5νa1b3 + 2Aa2 − a3C1 − 4a4C0)p
3 + 3(2νa0b3 + Aa1 − a3C0)p

2

+ (4Aa0 + a1C1 − 2a2C0)p + 2a0C1 − a1C0],

K2(p) = −ν2
[
8a2

4p
6 + 12a3a4p

5 + 3
(
a2

3 + 4a2a4
)
p4 + 4(a2a3 + 4a1a4)p

3

+ 6(a1a3 + 4a0a4)p
2 + 12a0a3p + 4a0a2 − a2

1

]
. (48)

Note that the integral (47) is valid only on the zero level of the energy integral

H = 1

2

[
p′2√

a4p4 + a3p3 + a2p2 + a1p + a0

+
q ′2√

a4q4 + b3q3 + b2q2 + b1q + b0

]

+
νb3p

3 + Ap2 + C1p + C0√
a4p4 + a3p3 + a2p2 + a1p + a0

+
νa3q

3 + Aq2 + D1q + D0√
a4q4 + b3q3 + b2q2 + b1q + b0

+ ν

[
q(4a4p

3 + 3a3p
2 + 2a2p + a1)√

a4p4 + a3p3 + a2p2 + a1p + a0

+
p(4a4q

3 + 3b3q
2 + 2b2q + b1)√

a4q4 + b3q3 + b2q2 + b1q + b0

]

= 0. (49)

The Lagrangian function (26) contains 15 parameters

a0, a1, a2, a3, a4, b0, b1, b2, b3, A,C0, C1,D0,D1, ν,

of which ν is the most decisive. When ν vanishes the system becomes separable and the
second integral is quadratic in the existing velocities.
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3. The master unconditional integrable system

In the Lagrangian (46) six parameters A,C0, C1,D0,D1, ν enter as linear multipliers in the
potential part but not anywhere else. Let us, as explained in subsection 1.7, introduce 13 new
parameters by renaming these parameters

C0 = h1 − α1h C1 = h2 − α2h A = h3 − α3h

D0 = h4 − α4h D1 = h5 − α5h ν = h0 − α0h.
(50)

Inserting those expressions in (46) and rearranging the terms, we get

L = 1

2

[
p′2√

a4p4 + a3p3 + a2p2 + a1p + a0

+
q ′2√

a4q4 + b3q3 + b2q2 + b1q + b0

]

−
[

h0b3p
3 + h3p

2 + h2p + h1√
a4p4 + a3p3 + a2p2 + a1p + a0

+
h0a3q

3 + h3q
2 + h5q + h4√

a4q4 + b3q3 + b2q2 + b1q + b0

]

− h0

[
q(4a4p

3 + 3a3p
2 + 2a2p + a1)√

a4p4 + a3p3 + a2p2 + a1p + a0

+
p(4a4q

3 + 3b3q
2 + 2b2q + b1)√

a4q4 + b3q3 + b2q2 + b1q + b0

]
+ �h,

(51)

where

� =
[

α0b3p
3 + α3p

2 + α2p + α1√
a4p4 + a3p3 + a2p2 + a1p + a0

+
α0a3q

3 + α3q
2 + α5q + α4√

a4q4 + b3q3 + b2q2 + b1q + b0

]

+ α0

[
q(4a4p

3 + 3a3p
2 + 2a2p + a1)√

a4p4 + a3p3 + a2p2 + a1p + a0

+
p(4a4q

3 + 3b3q
2 + 2b2q + b1)√

a4q4 + b3q3 + b2q2 + b1q + b0

]
. (52)

Now, we introduce the change of the time variable according to the rule (31). This
transforms the Lagrangian (51) to the form

L∗ = 1

2
�

[
ṗ2√

a4p4 + a3p3 + a2p2 + a1p + a0

+
q̇2√

a4q4 + b3q3 + b2q2 + b1q + b0

]

− 1

�

{[
h0b3p

3 + h3p
2 + h2p + h1√

a4p4 + a3p3 + a2p2 + a1p + a0

+
h0a3q

3 + h3q
2 + h5q + h4√

a4q4 + b3q3 + b2q2 + b1q + b0

]

+ h0

[
q(4a4p

3 + 3a3p
2 + 2a2p + a1)√

a4p4 + a3p3 + a2p2 + a1p + a0

+
p(4a4q

3 + 3b3q
2 + 2b2q + b1)√

a4q4 + b3q3 + b2q2 + b1q + b0

]}
+ h,

(53)

which now contains the (discardable) free additive energy parameter h. The quartic integral
corresponding to the last Lagrangian can be easily obtained from (47) after affecting the
substitution (50) by the change

I (p, q, p′, q ′) → I ∗ = I (p, q,�ṗ,�q̇). (54)

This means that

I ∗ = �4ṗ4 + 4�2[h0q(4a4p
3 + 3a3p

2 + 2a2p + a1) + h0b3p
3 + h3p

2 + h2p + h1]ṗ2

a4p4 + a3p3 + a2p2 + a1p + a0

− 16�2(h0 − α0h)ṗq̇

− h
α0q(4a4p

3 + 3a3p
2 + 2a2p + a1) + α0b3p

3 + α3p
2 + α2p + α1

a4p4 + a3p3 + a2p2 + a1p + a0
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− 32(h0 − α0h)2
√

a4p4 + a3p3 + a2p2 + a1p + a0

√
a4q4 + b3q3 + b2q2 + b1q + b0

− 16(h0 − α0h)(h5 − α5h)p + 4
K ′

0(p) + qK ′
1(p) + q2K ′

2(p)

(a4p4 + a3p3 + a2p2 + a1p + a0)
. (55)

K ′
0(p),K ′

1(p) and K ′
2(p) are obtained from K0(p),K1(p) and K2(p) in (48) by the

substitution (50).
In its final form (53) the Lagrangian involves 21 parameters apart from the additive

constant h which can be ignored in the Lagrangian and adopted as the energy constant. Of
these parameters, 15 enter in the kinetic energy (or the line element of the configuration space)
and 6 enter only as coefficients in the potential terms. In all the known systems, the one
with a quartic integral does not exceed 6 (see e.g. [10] and [14–37]). It should be noted that
such a colossal system could be obtained only in virtue of the simplifying steps made in the
introduction for both the form of the Lagrangian of the general natural system and the form
of its quartic integral.

One may explore the richness of the system (53) just by verifying the fact that it contains,
to the best of our knowledge, all the known up-to-date integrable cases with a quartic integral,
in both particle dynamics and rigid body dynamics. For example, all systems obtained by
using the ansatz

V = u(y) + v(y)
(x) (56)

can be obtained as special cases of our system. In fact, in order that the expression for U in (38)
reduces to the ansatz (56), the function 
(x) should satisfy the equation 
′′(x) + N
(x) = 0
for some constant N, so that 
 is a trigonometric (or hyperbolic) function. This is exactly
the form investigated in [30, 34, 35, 42]. All results in these works are special versions of the
present one.

In the next sections, we will give some examples in which this system becomes more
tractable and comes out as generalization of some more known systems.

4. Integrable motions on Riemannian two-dimensional manifolds, including the plane

A natural question arises: Under which conditions will the system (53) describe the motion of
a particle in the Euclidean plane or on a sphere or, more generally, in a flat 2D space or a space
of constant curvature? To answer this question, one must analyse the necessary condition that
the Gaussian curvature of the metric corresponding to the kinetic energy

κ = − 1

2G

[
4
√

P4
∂

∂p

(
4
√

P4
∂ ln G

∂p

)
+ 4

√
Q4

∂

∂q

(
4
√

Q4
∂ ln G

∂q

)]
, (57)

where P4(p),Q4(q) are the two quartic polynomials involved in the above formulae, should
vanish identically or take a constant value. It turned out that the condition of zero curvature
leads to a large number of equations in the 21 parameters. Every working combination
of parameters corresponds to a real integrable system in the plane only if it is possible to
choose the remaining parameters such that the kinetic energy becomes a positive definite in
the velocities. The last step is to affect a conformal transformation that reduces the metric
corresponding to (53) to that of the Euclidean plane. Similar procedures are adapted for cases
of constant positive and negative curvature, which can be interpreted as cases of motion on the
sphere S2 and the pseudosphere or the hyperbolic plane H 2. A detailed systematic analysis
of these points will be presented in a forthcoming paper.
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4.1. Generalizations and variations of some Toda-type systems

Let a4 = 1, a0 = a1 = a2 = a3 = b0 = b1 = b2 = b3 = 0. Under the coordinate
transformation p = ex, q = ey , the Lagrangian (53) takes the form

L = 1

2
(2α3 + α1 e−2x + α2 e−x + α4 e−2y + α5 e−y + 8α0 ex+y)(ẋ2 + ẏ2)

− 2h3 + h1 e−2x + h2 e−x + h4 e−2y + h5 e−y + 8h0 ex+y

2α3 + α1 e−2x + α2e−x + α4 e−2y + α5 e−y + 8α0 ex+y
(+h). (58)

To help identify or at least isolate certain cases of the configuration manifold of this system,
we first note that its Gaussian curvature

κ = − 1

2�

[
∂2 ln �

∂x2
+

∂2 ln �

∂y2

]
,

� = 2α3 + α1 e−2x + α2 e−x + α4 e−2y + α5 e−y + 8α0 ex+y.

(59)

That is,

κ = − 1

2
(
2α3 + α1 e−2x + α2 e−x + α4 e−2y + α5 e−y + 8α0 ex+y

)3

× (8α1 e−2xα3 + 2α2 e−xα3 + 32α0 ex+yα3 + 8α4 e−2yα3 + 2α5 e−yα3

+ α1α2 e−3x + 8α1α4 e−2x−2y + 5α1α5 e−2x−y + 80α1α0 e−x+y + 5α2α4 e−x−2y

+ 2α2α5 e−x−y + 40α2α0 ey + 80α0α4 ex−y + 40α0α5 ex + α4α5 e−3y). (60)

This curvature vanishes when all but one of the parameters αi, i = 0, . . . , 5 vanish. We
thus get six candidates of integrable Lagrangians in the Euclidean plane. Due to apparent
symmetry between the two variables, we have only four distinct cases which we present briefly
as follows.

(1) α3 = 1
2 and all other α’s vanish. We arrive at the system whose Lagrangian is

L = 1
2 (ẋ2 + ẏ2) − (A1 e−x + A2 e−2x + B1 e−y + B2 e−2y + C ex+y). (61)

It admits the quartic integral

I = [ẏ2 + 2(B1 e−y + B2 e−2y)][ẋ2 + 2(A1 e−x + A2 e−2x)] + 2C ex+y ẋẏ

+ C2 e2(x+y) + 2C(A1 ey + B1 ex). (62)

It is not hard to see that this system generalizes and unifies all the Toda-type systems
found in [14] and [15] (see also [10]), where at most three of the five coefficients of the
potential were present but had specific numerical values.

(2) α4 = 1 and all other α’s vanish. Substituting y = − ln(r), x = θ we get the Lagrangian

L = 1

2
(ṙ2 + r2θ̇2) −

(
h5

r
+

2h3 + h2 e−θ + h1 e−2θ

r2
+

8h0 eθ

r3

)
. (63)

The potential in this case can be regarded as a generalization of the centrally symmetric
Manev potential h5

r
+ 2h3

r2 .
(3) When α0 = 1 and all other α’s vanish the substitution x = ln r + θ, y = ln r − θ

transforms (58) to

L = 1

2
(ṙ2 + r2θ̇2) −

(
A1

r2
+

A2 eθ + A3 e−θ

r3
+

A4 e2θ + A5 e−2θ

r4

)
. (64)

This case coincides with that given in table V of [37].



The master integrable two-dimensional system with a quartic second integral 5819

(4) When α5 = 1 and all other α’s vanish the substitution x = 2θ, y = −2 ln r transforms
(58) to

L = 1

2
(ṙ2 + r2θ̇2) −

(
A0r

2 +
A1 + A2 e−2θ + A3 e−4θ

r2
+

A4 e2θ

r4

)
. (65)

4.2. Generalization of the cases of Bozis and Wojciechowski

Let a4 = a0 = b0 = 1, a2 = b2 = −2, a1 = a3 = b1 = b3 = 0. Under the coordinate
transformation p = sin y, q = sin x, the Lagrangian (53) takes the form

L = 1

2

[
−2α3 − 8α0 sin x sin y +

β1 + α5 sin x

cos2 x
+

β2 + α2 sin y

cos2 y

]
(ẋ2 + ẏ2)

−
−2h3 − 8h0 sin x sin y + h3+h4+h5 sin x

cos2 x
+ h3+h1+h2 sin y

cos2 y

−2α3 − 8α0 sin x sin y + β1+α5 sin x

cos2 x
+ β2+α2 sin y

cos2 y

. (66)

When α3 = − 1
2 , α0 = α2 = α5 = β1 = β2 = 0, we have, after ignoring an insignificant

additive constant,

L = 1

2
(ẋ2 + ẏ2) −

(
−8h0 sin x sin y +

h4 + h5 sin x

cos2 x
+

h1 + h2 sin y

cos2 y

)
. (67)

This gives the system found by Bozis [24]. A slight variation of the parameters in (66) to be
a2 = b2 = 2 changes trigonometric functions to hyperbolic (or exponential) functions, and
thus giving solutions of the type of [27].

In a similar way, one can obtain a mix of the two types. Let a4 = 1, a0 = a1 = a2 =
a3 = b3 = b1 = 0, b0 = 1, b2 = −2. Under the coordinate transformation p = sin x, q = ey ,
the Lagrangian (53) takes the form

L = 1

2

(
α1 e−2y + α2 e−y +

α3 + α5 sin x

cos2 x

)
(ẋ2 + ẏ2) − h1 e−2y + h2 e−y + h3+h5 sin x

cos2 x

α1 e−2y + α2 e−y + α3+α5 sin x

cos2 x

. (68)

4.3. A motion in the plane and generalization

Let a3 = b3 = 1, a0 = a1 = a2 = a4 = b0 = b1 = b2 = 0. The integrable Lagrangian takes
the form

L = 1

2

[
α0r

6 + α3r
2 +

α1

x6
+

α2

x2
+

α4

y6
+

α5

y2

]
(ẋ2 + ẏ2) −

k0r
6 + k3r

2 + k1
x6 + k2

x2 + k4
y6 + k5

y2

α0r6 + α3r2 + α1
x6 + α2

x2 + α4
y6 + α5

y2

,

(69)

where r =
√

x2 + y2. This form can be transformed using the mapping

x + iy → √
x + iy or (x, y) →

(√
r + x

2
,

√
r − x

2

)
(70)

to

L = 1

2

{
A0r

2 + A1 +
A2

y2
+

A3(4x2 + y2)

y6
+

x

r

[
A4

y2
+

A5(4x2 + 3y2)

y6

]}
(ẋ2 + ẏ2)

−
n0r

2 + n1 + n2
y2 + n3(4x2+y2)

y6 + x
r

[
n4
y2 + n5(4x2+3y2)

y6

]
A0r2 + A1 + A2

y2 + A3(4x2+y2)

y6 + x
r

[
A4
y2 + A5(4x2+3y2)

y6

] . (71)
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The last system contains as a special case A0 = A2 = A3 = A4 = A5 = 0; A1 = 1 is a case
of motion in the Euclidean plane with the Lagrangian

L = 1

2
(ẋ2 + ẏ2) −

{
n0r

2 + n1 +
n2

y2
+

n3(4x2 + y2)

y6
+

x

r

[
n4

y2
+

n5(4x2 + 3y2)

y6

]}
. (72)

The transformation (70) applied to (69) can be repeated in (71) for n4 = n5 = 0 to yield the
new system

L = 1

2

[
A0 +

A1

r
+

2A2(r + x)

y2r
+

4A3(5r + 3x)(r + x)3

y6r

]
(ẋ2 + ẏ2)

−
n0 + n1

r
+ 2n2(r+x)

y2r
+ 4n3(5r+3x)(r+x)3

y6r

A0 + A1
r

+ 2A2(r+x)

y2r
+ 4A3(5r+3x)(r+x)3

y6r

. (73)

When A1 = A2 = A3 = 0 this system reduces to the plane motion of a particle in the potential

V = n1

r
+

2n2(r + x)

y2r
+

4n3(5r + 3x)(r + x)3

y6r
. (74)

4.4. The Wojciechowska–Wojciechowski system

Let a1 = a2 = a3 = a4 = α0 = α2 = α3 = α4 = α5 = 0, a0 = 1, α1 = 1. After renaming
ξ → y, η = x, the Lagrangian of the system may be written in the form

L = 1

2
(ẋ2 + ẏ2) −

[
h0b3y

3 + h3y
2 + h2y

+
h0y(3b3q

2 + 2b2q + b1)√
b3q3 + b2q2 + b1q + b0

+
h3q

2 + h5q + h4√
b3q3 + b2q2 + b1q + b0

]
, (75)

where q can be expressed by any real branch of the inverse function of the integral

x =
∫

dq

4
√

b3q3 + b2q2 + b1q + b0

. (76)

Without loss of generality one can assume b3 > 0. The function under the quartic root has one
real root q0 or three real roots q0, q1, q2 (q0 > q1 > q2). In the first case, the function q has
one real branch passing through (x0, q0). This branch is clearly unbounded, even in (x − x0)

and changes from ∞ to q0 and then to ∞ as x changes on (−∞,∞). In the second case, in
addition to the above branch we have a bounded branch with range [q2, q1] which is periodic
with the period

X = 2
∫ q1

q2

dq

4
√

b3q3 + b2q2 + b1q + b0

. (77)

In [26] Wojciechowska and Wojciechowski pointed out a family of potentials allowing a
quartic integral in the problem of plane motion of a particle. These potentials have the general
form [26]

V = k
[
γ (x) − n′(x)y + 1

6by3 1
2ay2 + ey

]
, (78)

where n is the solution of

n(n′′′ + b) + 5n′n′′ = 0, (79)

and γ satisfies the linear equation

n(γ ′′ − a) + 3n′γ ′ + 2n′′γ = 0. (80)
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The trials in [26] to obtain an explicit solution of (79) gave fragmental and very complicated
results. We will now show that the difficulty was caused by an unlucky choice of n as the
dependent variable. In fact, if in (79) we replace n by 
′(x), rename b as −3a3 and note that
a4 = 0, we just obtain equation (42), for which the general solution is given by (45). The
problem that forced the authors to enter a maze of special cases in solving (79) can now be
explained: expressing the derivative 
′(x),


′(x) = 4
√

b3
(x)3 + b2
(x)2 + b1
(x) + b0,

explicitly in terms of x, is a much more complicated task than solving this equation in 
(x).

Equation (80) can also be identified with the appropriate one in (43). Thus, we conclude
that the system described by (75) is just a realization of the system pointed out in [26] by
completing the missing steps in its solution.

The special case of (75), when b0 = b1 = b2 = 0, b3 = 1, reproduces the potential

V = a(x2 + 16y2) + b(3x2y + 16y3) + cy +
d

x2
+

e

x6
(81)

obtained in [26] and generalizes earlier results of [16, 17, 20] concerning extensions of
integrable versions of the Henon–Heiles system [21].

4.5. Generalization of a system due to Ramani and Grammaticos

Let a0 = a1 = a3 = a4 = α0 = α1 = α3 = α4 = α5 = 0, a2 = 1, α2 = 1. The Lagrangian
can be written in the form

L = 1

2
(ẋ2 + ẏ2) −

(
1

16
h0b3y

4 +
1

4
h3y

2 +
4h1

y2
+ 2h0q

)

− h0y
2(3b3q

2 + 2b2q + b1)

4
√

b3q3 + b2q2 + b1q + b0

− h3q
2 + h5q + h4√

b3q3 + b2q2 + b1q + b0

(+h), (82)

where q is given by the same relation as (76). This system is similar to the previous one in
structure. It differs only in the powers of y in some terms.

The system (82) includes some previously known cases as special cases. If we put
b0 = b1 = b2 = 0, b3 = 1, we obtain, after a simple change of variables and parameters, the
plane potential

V = (x2 + 4y2)[a + b(x2 + 2y2)] +
c

y2
+

d

x2
+

e

x6
(83)

found in [16]. If, moreover, a = c = d = e = 0 we get the potential found in [18] and [19].

5. Two new integrable cases in rigid body dynamics

One of the unexpected results is the applicability of the new system to the field of dynamics
of a rigid body about a fixed point under the action of an axisymmetric potential field. After
ignoring the cyclic angle of precession on the zero level of the cyclic integral and in the
absence of gyroscopic forces, the Routhian of this mechanical system expressed in the other
two Eulerian angles has the form (see e.g. [9])

R = 1

2

[
θ̇2 +

C sin2 θϕ̇2

A − (A − C) cos2 θ

]
− 1

A
V, (84)

where θ is the angle of nutation and ϕ is the angle of proper rotation (about the axis of symmetry
of the body). Comparing the structure of this Routhian function to that of the Lagrangian (53)
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and recalling the procedure followed in a similar situation in [42], we get convinced that they
become identical only in the four cases of that work valid for A = B = 2C. We complete the
analysis here only in the two cases in which the potential is 2π -periodic in the angle of proper
rotation ϕ and is thus single valued on the configuration space of the rigid body.

5.1. The first case

Setting

α0 = α4 = α5 = 0, α1 = − 1
8 , α2 = 1, α3 = −2

a0 = − 3
16 , a1 = 2, a2 = −6, a3 = b3 = b1 = 0,

a4 = 16, b0 = 16a4, b2 = −32a2,

and renaming other constants and performing the substitution

p = − 1
4 (cos2 θ − csc2 θ), q = a sin 2ϕ,

we obtain the Routhian (84) with the new integrable potential

V = A

[
1

2
a sin2 θ sin 2ϕ +

λ

cos2 θ
− A1 sin2 θ

cos6 θ
+

1 + sin2 θ

sin2 θ cos2 2ϕ
(e0 + e1a sin 2ϕ)

]
, (85)

admitting the quartic integral

I = sin8 θϕ̇4

(1 + sin2 θ)4
+

[
−2h sin2 θ + a sin 2ϕ(sin2 θ + cos4 θ) + 4 sin2 θ

e0 + e1 sin 2ϕ

cos2 2ϕ

]

× sin2 θϕ̇2

(1 + sin2 θ)2
− a

sin θ cos3 θ cos 2ϕθ̇ ϕ̇

(1 + sin2 θ)
+ a(λ − h) sin 2ϕ − 1

4
a2(1 − cos4 θ) cos2 2ϕ

+ a(cos2 θ − csc2 θ)(e1 − 2
(e1 + e0 sin 2ϕ)

cos2 2ϕ
) − 4

h(e0 + e1 sin 2ϕ) + e2
1

cos2 2ϕ

+
4
(
e2

0 + e2
1 + 2e0e1 sin 2ϕ

)
cos4 2ϕ

. (86)

This new case (85) involves two arbitrary parameters e0, e1 more than the case pointed out
recently in [41]. When e0 = e1 = A1 = 0, we get a potential due to Goriatchev [39, 36].
If, moreover, λ = 0 the present case reduces to the well-known case of motion of a body by
inertia in a liquid due to Chaplygin [40].

5.2. The second case

In this case, we set

α0 = α1 = α2 = α5 = 0, α3 = −1

2
, α4 = a2

2

h0 = −1

4
, h1 = λ

4
, h2 = −ε

2
, h3 = 0, h4 = a2ν0, h5 = aν1

a0 = a1 = a3 = b1 = b3 = 0, a2 = a4 = 1, b0 = a4, b2 = −2a2

p = − cos2 θ

2 sin θ
, q = a sin ϕ.

(87)

This leads to the new integrable potential

V = a sin θ sin ϕ +
λ

cos2 θ
+

ε

sin θ
+

1 + sin2 θ

sin2 θ cos2 ϕ
(ν0 + ν1 sin ϕ). (88)
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The integral can be written analogously in the form

I = sin8 θϕ̇4

(1 + sin2 θ)4
+ 2a

sin2 θ cos θ cos ϕθ̇ ϕ̇

(1 + sin2 θ)

−
[

2h sin2 θ + 2a sin θ cos2 θ sin ϕ + 4 sin2 θ
ν0 + ν1 sin ϕ

cos2 ϕ

]
sin2 θϕ̇2

(1 + sin2 θ)2

+ a2 sin2 θ cos2 ϕ − 2aε sin ϕ + 2aν1
cos2 θ

sin θ
− 4

ν2
1

cos2 ϕ
− 4h

ν0 + ν1 sin ϕ

cos2 ϕ

− 4a
cos2 θ(ν0 sin ϕ + ν1)

sin θ cos2 ϕ
+

4(ν2
0 + ν2

1 + 2ν0ν1 sin ϕ)

cos4 ϕ
. (89)

This case is also new. It involves the two parameters ν0, ν1 more than the case of [30] (see
also [36]).

As was done with most of the key formulae in this paper, the constancy of the integrals (86),
(89) on the energy level h and zero level of the cyclic constant in virtue of the corresponding
Lagrangian equations of motion in each case has been checked directly using computer algebra
programs.
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